Asymptotics of Likelihood Ratio Derivative Estimators in Simulations of Highly Reliable Markovian Systems
نویسنده
چکیده
We discuss the estimation of derivatives of a performance measure using the likelihood ratio method in simulations of highly reliable Markovian systems. We compare the difficulties of estimating the performance measure and of estimating its partial derivatives with respect to component failure rates as the component failure rates tend to 0 and the component repair rates remain fixed. We first consider the case when the quantities are estimated using naive simulation; i.e., when no variance reduction technique is used. In particular, we prove that in the limit, some of the partial derivatives can be estimated as accurately as the performance measure itself. This result is of particular interest in light of the somewhat pessimistic empirical results others have obtained when applying the likelihood ratio method to other types of systems. However, the result only holds for certain partial derivatives of the performance measure when using naive simulation. More specifically, we can estimate a certain partial derivative with the same relative accuracy as the performance measure if the partial derivative is associated with a component either having one of the largest failure rates or whose failure can trigger a failure transition on one of the “most likely paths to failure.” Also, we develop a simple criterion to determine which partial derivatives will satisfy either of these properties. In particular, we can identify these derivatives using a sensitivity measure which can be calculated for each type of component.
منابع مشابه
General Conditions for Bounded Relative Error in Simulations of Highly Reliable Markovian Systems
We establish a necessary condition for any importance sampling scheme to give bounded relative error when estimating a performance measure of a highly reliable Markovian system. Also, a class of importance sampling methods is defined for which we prove a necessary and sufficient condition for bounded relative error for the performance measure estimator. This class of probability measures includ...
متن کاملOn Derivative Estimation of the Mean Time to Failure in Simulations of Highly Reliable Markovian Systems
The mean time to failure (MTTF) of a Markovian system can be expressed as a ratio of two expectations. For highly reliable Markovian systems, the resulting ratio formula consists of one expectation that cannot be estimated with bounded relative error when using standard simulation, while the other, which we call a non-rare expectation, can be estimated with bounded relative error. We show that ...
متن کاملLikelihood Ratio Sensitivity Analysis for Markovian Models of Highly Dependable Systems
This paper discusses the application of the likelihood ratio gradient estimator to simulations of large Markovian models of highly dependable systems. Extensive empirical work, as well as some mathematical analysis of small dependability models, suggests that (in this model setting) the gradient estimators are not signiicantly more noisy than the estimates of the performance measures themselves...
متن کاملPermuted Estimators for Regenerative Simulations
In a previous paper we introduced a new variance-reduction technique for regenerative simulations based on permuting regeneration cycles. In this paper we apply this idea to large classes of other estimators. In particular, we derive permuted versions of likelihood-ratio derivative estimators for steady-state performance measures, importance-sampling estima-tors of the mean cumulative reward un...
متن کاملPermuted Product and Importance-Sampling Estimators for Regenerative Simulations
In a previous paper we introduced a new variance-reduction technique for regenerative simulations based on permuting regeneration cycles. In this paper we apply this idea to new classes of estimators. In particular, we derive permuted versions of likelihood-ratio derivative estimators for steady-state performance measures, importance-sampling estimators of the mean cumulative reward until hitti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000